Sandbox

AgentScope Runtime’s Sandbox is a versatile tool that provides a secure and isolated environment for a wide range of operations, including tool execution, browser automation, and file system operations. This tutorial will empower you to set up the tool sandbox dependency and run tools in an environment tailored to your specific needs.

Prerequisites

Note

The current sandbox supports multiple backend isolation/runtime options. For local usage, you can use Docker (optionally with gVisor) or BoxLite. For large-scale remote/production deployments, we recommend Kubernetes (K8s), Function Compute (FC), or Alibaba Cloud ACK. You can also switch the backend by setting the CONTAINER_DEPLOYMENT environment variable (default: docker).

Warning

For Apple Silicon devices (such as M1/M2), we recommend the following options to run an x86 Docker environment for maximum compatibility:

  • Docker Desktop: Please refer to the Docker Desktop installation guide to enable Rosetta 2, ensuring compatibility with x86_64 images.

  • Colima: Ensure that Rosetta 2 support is enabled. You can start Colima with the following command to achieve compatibility: colima start --vm-type=vz --vz-rosetta --memory 8 --cpu 1

  • Docker (optionally with gVisor) or BoxLite (local)

  • (Optional, remote/production, choose as needed) Kubernetes (K8s) / Function Compute (FC) / Alibaba Cloud ACK

Setup

Install Dependencies

First, install AgentScope Runtime:

pip install agentscope-runtime

Prepare the Docker Images

The sandbox uses different Docker images for various functionalities. You can pull only the images you need or all of them for complete functionality:

Option 2: Pull Specific Images

Choose the images based on your specific needs:

Image

Purpose

When to Use

Base Image

Python code execution, shell commands

Essential for basic tool execution

GUI Image

Computer Use

When you need a graph UI

Filesystem Image

File system operations

When you need file read/write/management

Browser Image

Web browser automation

When you need web scraping or browser control

Mobile Image

Mobile operations

When you need to operate a mobile device

Training Image

Training and evaluating agent

Used for training and evaluating agent on some benchmark (see Training Sandbox for details)

Verify Installation

You can verify that everything is set up correctly by calling run_ipython_cell:

import json
from agentscope_runtime.sandbox import BaseSandbox

with BaseSandbox() as sandbox:
    # Model Context Protocol (MCP)-compatible tool call results
    result = sandbox.run_ipython_cell(code="print('Setup successful!')")
    print(json.dumps(result, indent=4, ensure_ascii=False))

(Optional) Built the Docker Images from Scratch

If you prefer to build the Docker images yourself or need custom modifications, you can build them from scratch. Please refer to Advanced Usage of Tool Sandbox for detailed instructions.

Sandbox Usage

Create a Sandbox

The previous section introduced tool-centred usage methods, while this section introduces sandbox-centred usage methods.

You can create different types of sandboxes via the sandbox SDK. AgentScope Runtime provides both synchronous and asynchronous versions for each sandbox type:

Synchronous Class

Asynchronous Class

BaseSandbox

BaseSandboxAsync

GuiSandbox

GuiSandboxAsync

FilesystemSandbox

FilesystemSandboxAsync

BrowserSandbox

BrowserSandboxAsync

MobileSandbox

MobileSandboxAsync

TrainingSandbox

-

AgentbaySandbox

-

  • Base Sandbox: Use for running Python code or shell commands in an isolated environment.

# --- Synchronous version ---
from agentscope_runtime.sandbox import BaseSandbox

with BaseSandbox() as box:
    # By default, pulls `agentscope/runtime-sandbox-base:latest` from DockerHub
    print(box.list_tools()) # List all available tools
    print(box.run_ipython_cell(code="print('hi')"))  # Run Python code
    print(box.run_shell_command(command="echo hello"))  # Run shell command
    input("Press Enter to continue...")

# --- Asynchronous version ---
from agentscope_runtime.sandbox import BaseSandboxAsync

async with BaseSandboxAsync() as box:
    # Default image is `agentscope/runtime-sandbox-base:latest`
    print(await box.list_tools())  # List all available tools
    print(await box.run_ipython_cell(code="print('hi')"))  # Run Python code
    print(await box.run_shell_command(command="echo hello"))  # Run shell command
    input("Press Enter to continue...")
  • GUI Sandbox: Provides a virtual desktop environment for mouse, keyboard, and screen operations.

    GUI Sandbox
# --- Synchronous version ---
from agentscope_runtime.sandbox import GuiSandbox

with GuiSandbox() as box:
    # By default, pulls `agentscope/runtime-sandbox-gui:latest` from DockerHub
    print(box.list_tools())  # List all available tools
    print(box.desktop_url)  # Web desktop access URL
    print(box.computer_use(action="get_cursor_position"))  # Get mouse cursor position
    print(box.computer_use(action="get_screenshot"))  # Capture screenshot
    input("Press Enter to continue...")

# --- Asynchronous version ---
from agentscope_runtime.sandbox import GuiSandboxAsync

async with GuiSandboxAsync() as box:
    # Default image is `agentscope/runtime-sandbox-gui:latest`
    print(await box.list_tools())  # List all available tools
    print(box.desktop_url)  # Web desktop access URL
    print(await box.computer_use(action="get_cursor_position"))  # Get mouse cursor position
    print(await box.computer_use(action="get_screenshot"))  # Capture screenshot
    input("Press Enter to continue...")
  • Filesystem Sandbox: A GUI-based sandbox with file system operations such as creating, reading, and deleting files.

    GUI Sandbox
# --- Synchronous version ---
from agentscope_runtime.sandbox import FilesystemSandbox

with FilesystemSandbox() as box:
    # By default, pulls `agentscope/runtime-sandbox-filesystem:latest` from DockerHub
    print(box.list_tools())  # List all available tools
    print(box.desktop_url)  # Web desktop access URL
    box.create_directory("test")  # Create a directory
    input("Press Enter to continue...")

# --- Asynchronous version ---
from agentscope_runtime.sandbox import FilesystemSandboxAsync

async with FilesystemSandboxAsync() as box:
    # Default image is `agentscope/runtime-sandbox-filesystem:latest`
    print(await box.list_tools())  # List all available tools
    print(box.desktop_url)  # Web desktop access URL
    await box.create_directory("test")  # Create a directory
    input("Press Enter to continue...")
  • Browser Sandbox: A GUI-based sandbox with browser operations inside an isolated sandbox.

    GUI Sandbox
# --- Synchronous version ---
from agentscope_runtime.sandbox import BrowserSandbox

with BrowserSandbox() as box:
    # By default, pulls `agentscope/runtime-sandbox-browser:latest` from DockerHub
    print(box.list_tools())  # List all available tools
    print(box.desktop_url)  # Web desktop access URL
    box.browser_navigate("https://www.google.com/")  # Open a webpage
    input("Press Enter to continue...")

# --- Asynchronous version ---
from agentscope_runtime.sandbox import BrowserSandboxAsync

async with BrowserSandboxAsync() as box:
    # Default image is `agentscope/runtime-sandbox-browser:latest`
    print(await box.list_tools())  # List all available tools
    print(box.desktop_url)  # Web desktop access URL
    await box.browser_navigate("https://www.google.com/")  # Open a webpage
    input("Press Enter to continue...")
  • Mobile Sandbox: A sandbox based on an Android emulator, allowing for mobile operations such as tapping, swiping, inputting text, and taking screenshots.

    Mobile Sandbox
    • Prerequisites

      • Linux Host: When running on a Linux host, this sandbox requires the binder and ashmem kernel modules to be loaded. If they are missing, execute the following commands on your host to install and load the required modules:

          # 1. Install extra kernel modules
          sudo apt update && sudo apt install -y linux-modules-extra-`uname -r`
      
          # 2. Load modules and create device nodes
          sudo modprobe binder_linux devices="binder,hwbinder,vndbinder"
          sudo modprobe ashmem_linux
      
      • Architecture Compatibility: When running on an ARM64/aarch64 architecture (e.g., Apple M-series chips), you may encounter compatibility or performance issues. It is recommended to run on an x86_64 host.

# --- Synchronous version ---
from agentscope_runtime.sandbox import MobileSandbox

with MobileSandbox() as box:
    # By default, pulls 'agentscope/runtime-sandbox-mobile:latest' from DockerHub
    print(box.list_tools())  # List all available tools
    print(box.mobile_get_screen_resolution())  # Get the screen resolution
    print(box.mobile_tap([500, 1000]))  # Tap at coordinate (500, 1000)
    print(box.mobile_input_text("Hello from AgentScope!"))  # Input text
    print(box.mobile_key_event(3))  # HOME key event
    screenshot_result = box.mobile_get_screenshot()  # Get screenshot
    print(screenshot_result)
    input("Press Enter to continue...")

# --- Asynchronous version ---
from agentscope_runtime.sandbox import MobileSandboxAsync

async with MobileSandboxAsync() as box:
    # Default image is 'agentscope/runtime-sandbox-mobile:latest'
    print(await box.list_tools())  # List all available tools
    print(await box.mobile_get_screen_resolution())  # Get the screen resolution
    print(await box.mobile_tap([500, 1000]))  # Tap at coordinate (500, 1000)
    print(await box.mobile_input_text("Hello from AgentScope!"))  # Input text
    print(await box.mobile_key_event(3))  # HOME key event
    screenshot_result = await box.mobile_get_screenshot()  # Get screenshot
    print(screenshot_result)
    input("Press Enter to continue...")
  • TrainingSandbox: Sandbox for training and evaluation,please refer to Training Sandbox for details.

from agentscope_runtime.sandbox import TrainingSandbox

# Create a training sandbox
with TrainingSandbox() as box:
    profile_list = box.get_env_profile(env_type="appworld", split="train")
    print(profile_list)
  • AgentBay Sandbox (AgentbaySandbox): A cloud sandbox implementation based on AgentBay cloud service, supporting multiple image types (Linux, Windows, Browser, CodeSpace, Mobile, etc.).

from agentscope_runtime.sandbox import AgentbaySandbox

# Use AgentBay cloud sandbox (requires API key configuration)
with AgentbaySandbox(
    api_key="your_agentbay_api_key",
    image_id="linux_latest",  # Optional: specify image type
) as box:
    print(box.list_tools())  # List all available tools
    print(box.run_shell_command(command="echo hello from cloud"))
    print(box.get_session_info())  # Get session information

AgentBay Sandbox Features:

  • No local Docker required, fully cloud-based

  • Supports multiple environment types (Linux, Windows, Browser, etc.)

  • Automatic session lifecycle management

  • Direct API communication with cloud service

Note

More sandbox types are under development—stay tuned!

Add MCP Server to Sandbox

MCP (Model Context Protocol) is a standardised protocol that enables AI applications to securely connect to external data sources and tools. By integrating MCP servers into your sandbox, you can extend the sandbox’s capabilities with specialised tools and services without compromising security.

The sandbox supports integrating MCP servers via the add_mcp_servers method. Once added, you can discover available tools using list_tools and execute them with call_tool. Here’s an example of adding a time server that provides timezone-aware time functions:

with BaseSandbox() as sandbox:
    mcp_server_configs = {
        "mcpServers": {
            "time": {
                "command": "uvx",
                "args": [
                    "mcp-server-time",
                    "--local-timezone=America/New_York",
                ],
            },
        },
    }

    # Add the MCP server to the sandbox
    sandbox.add_mcp_servers(server_configs=mcp_server_configs)

    # List all available tools (now includes MCP tools)
    print(sandbox.list_tools())

    # Use the time tool provided by the MCP server
    print(
        sandbox.call_tool(
            "get_current_time",
            arguments={
                "timezone": "America/New_York",
            },
        ),
    )

Connect to Remote Sandbox

Note

Remote deployment is beneficial for:

  • Separating comput-intensive tasks to dedicated servers

  • Multiple clients sharing the same sandbox environment

  • Developing on resource-constrained local machines while executing on high-performance servers

  • Deploy sandbox server with K8S

For more advanced usage of sandbox-server, please refer to Advanced Usage of Tool Sandbox for detailed instructions.

You can start the sandbox server on your local machine or on different machines for convenient remote access. You should start a sandbox server via:

runtime-sandbox-server

To connect to the remote sandbox service, pass in base_url:

# Connect to remote sandbox server (replace with actual server IP)
with BaseSandbox(base_url="http://your_IP_address:8000") as box:
    print(box.run_ipython_cell(code="print('hi')"))

Expose Sandbox as an MCP Server

Configure the local Sandbox Runtime as an MCP server named sandbox, so it can be invoked by MCP-compatible clients to safely execute commands from the sandbox via a remote sandbox server http://127.0.0.1:8000.

{
    "mcpServers": {
        "sandbox": {
            "command": "uvx",
            "args": [
                "--from",
                "agentscope-runtime",
                "runtime-sandbox-mcp",
                "--type=base",
                "--base_url=http://127.0.0.1:8000"
            ]
        }
    }
}

Command Arguments

The runtime-sandbox-mcp command accepts the following arguments:

Argument

Values

Description

--type

base, gui, browser, filesystem

Type of sandbox

--base_url

URL string

Base URL of a remote sandbox service. Leave empty to run locally.

--bearer_token

String token

Optional authentication token for secure access.

Sandbox Service

Managing Sandboxes with SandboxService

SandboxService provides a unified sandbox management interface, enabling management of sandbox environments across different user sessions via session_id and user_id. Using SandboxService lets you better control a sandbox’s lifecycle and enables sandbox reuse.

from agentscope_runtime.engine.services.sandbox import SandboxService

async def main():
    # Create and start the sandbox service
    sandbox_service = SandboxService()
    await sandbox_service.start()

    session_id = "session_123"
    user_id = "user_12345"

    # Connect to the sandbox, specifying the required sandbox type
    sandboxes = sandbox_service.connect(
        session_id=session_id,
        user_id=user_id,
        sandbox_types=["base"],
    )

    base_sandbox = sandboxes[0]

    # Call utility methods directly on the sandbox instance
    result = base_sandbox.run_ipython_cell("print('Hello, World!')")
    base_sandbox.run_ipython_cell("a=1")

    print(result)

    # Using the same session_id and user_id will reuse the same sandbox instance
    new_sandboxes = sandbox_service.connect(
        session_id=session_id,
        user_id=user_id,
        sandbox_types=["base"],
    )

    new_base_sandbox = new_sandboxes[0]
    # Variable 'a' still exists because the same sandbox is reused
    result = new_base_sandbox.run_ipython_cell("print(a)")
    print(result)

    # Stop the sandbox service
    await sandbox_service.stop()

await main()

Adding an MCP Server Using SandboxService

from agentscope_runtime.engine.services.sandbox import SandboxService

async def main():
    sandbox_service = SandboxService()
    await sandbox_service.start()

    session_id = "session_mcp"
    user_id = "user_mcp"

    sandboxes = sandbox_service.connect(
        session_id=session_id,
        user_id=user_id,
        sandbox_types=["base"],
    )

    sandbox = sandboxes[0]

    mcp_server_configs = {
        "mcpServers": {
            "time": {
                "command": "uvx",
                "args": [
                    "mcp-server-time",
                    "--local-timezone=America/New_York",
                ],
            },
        },
    }

    # Add MCP server to the sandbox
    sandbox.add_mcp_servers(server_configs=mcp_server_configs)

    # List all available tools (now includes MCP tools)
    print(sandbox.list_tools())

    # Use the time tool from the MCP server
    print(
        sandbox.call_tool(
            "get_current_time",
            arguments={
                "timezone": "America/New_York",
            },
        ),
    )

    await sandbox_service.stop()

await main()

Connecting to a Remote Sandbox Using SandboxService

from agentscope_runtime.engine.services.sandbox import SandboxService

async def main():
    # Create SandboxService and specify the remote server address
    sandbox_service = SandboxService(
        base_url="http://your_IP_address:8000",  # Replace with actual server IP
        bearer_token="your_token"  # Optional: if authentication is required
    )
    await sandbox_service.start()

    session_id = "remote_session"
    user_id = "remote_user"

    # Connect to the remote sandbox
    sandboxes = sandbox_service.connect(
        session_id=session_id,
        user_id=user_id,
        sandbox_types=["base"],
    )

    base_sandbox = sandboxes[0]
    print(base_sandbox.run_ipython_cell(code="print('hi')"))

    await sandbox_service.stop()

await main()

Tool List

  • Base Tools (Available in all sandbox types)

  • Computer-use Tool (Available in GuiSandbox)

  • Browser Tools (Available in BrowserSandbox)

  • Filesystem Tools (Available in FilesystemSandbox)

  • Mobile Tools (Available in MobileSandbox)

Category

Tool Name

Description

Base Tools

run_ipython_cell(code: str)

Execute Python code in an IPython environment

run_shell_command(command: str)

Execute shell commands in the sandbox

Filesystem Tools

read_file(path: str)

Read the complete contents of a file

read_multiple_files(paths: list)

Read multiple files simultaneously

write_file(path: str, content: str)

Create or overwrite a file with content

edit_file(path: str, edits: list, dryRun: bool)

Make line-based edits to a text file

create_directory(path: str)

Create a new directory

list_directory(path: str)

List all files and directories in a path

directory_tree(path: str)

Get recursive tree view of directory structure

move_file(source: str, destination: str)

Move or rename files and directories

search_files(path: str, pattern: str, excludePatterns: list)

Search for files matching a pattern

get_file_info(path: str)

Get detailed metadata about a file or directory

list_allowed_directories()

List directories the server can access

Browser Tools

browser_navigate(url: str)

Navigate to a specific URL

browser_navigate_back()

Go back to the previous page

browser_navigate_forward()

Go forward to the next page

browser_close()

Close the current browser page

browser_resize(width: int, height: int)

Resize the browser window

browser_click(element: str, ref: str)

Click on a web element

browser_type(element: str, ref: str, text: str, submit: bool)

Type text into an input field

browser_hover(element: str, ref: str)

Hover over a web element

browser_drag(startElement: str, startRef: str, endElement: str, endRef: str)

Drag and drop between elements

browser_select_option(element: str, ref: str, values: list)

Select options in a dropdown

browser_press_key(key: str)

Press a keyboard key

browser_file_upload(paths: list)

Upload files to the page

browser_snapshot()

Capture accessibility snapshot of the current page

browser_take_screenshot(raw: bool, filename: str, element: str, ref: str)

Take a screenshot of the page or element

browser_pdf_save(filename: str)

Save the current page as PDF

browser_tab_list()

List all open browser tabs

browser_tab_new(url: str)

Open a new tab

browser_tab_select(index: int)

Switch to a specific tab

browser_tab_close(index: int)

Close a tab (current tab if index not specified)

browser_wait_for(time: int, text: str, textGone: str)

Wait for conditions or time to pass

browser_console_messages()

Get all console messages from the page

browser_network_requests()

Get all network requests since page load

browser_handle_dialog(accept: bool, promptText: str)

Handle browser dialogs (alert, confirm, prompt)

Computer Use Tools

computer_use(action: str, coordinate: list, text: str)

Use a mouse and keyboard to interact with a desktop GUI, supporting actions like moving the cursor, clicking, typing, and taking screenshots

Mobile Tools

mobile_get_screen_resolution()

Get the screen resolution of the mobile device

mobile_tap(coordinate: List[int])

Tap at a specific coordinate on the screen

mobile_swipe(start: List[int], end: List[int], duration: int = None)

Perform a swipe gesture on the screen from a start point to an end point

mobile_input_text(text: str)

Input a text string into the currently focused UI element

mobile_key_event(code: int | str)

Send a key event to the device (e.g., HOME, BACK)

mobile_get_screenshot()

Take a screenshot of the current device screen